Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization

- **Nonconvex** optimization: Deep Learning, NLP, Recommendation, etc.
- **Asynchronous** Stochastic Gradient (AsySG): popular & powerful in large scale problems.

For **AsySG** in nonconvex optimization, the theoretical analysis is still limited.

Our Main Results: Proved 1) Convergence of AsySG, 2) Linear speedup in parallelism.
Asynchronous Stochastic Gradient Algorithm (AsySG)

Central Node

\[x_{t+1} \leftarrow x_t - \gamma G(\hat{x}_t) \]

Workers

\[G(\hat{x}_t) \] : stochastic gradient. \(x \) : optimization variable.

All workers run concurrently:
1. (Read): read \(\hat{x}_t \) from the central node.
2. (Compute): compute \(G(\hat{x}_t) \) using local data.
3. (Update): update \(x \) in the central node
 without locks:
 \[x_{t+1} \leftarrow x_t - \gamma G(\hat{x}_t). \]

Key challenges in analysis
- \(\hat{x}_t \neq x_t \);
- Different implementations => Different forms of \(\hat{x}_t \).

Example
- Cluster Implementation
- Multicore Implementation
Our Results

\(K := \# \text{ of iterations.} \)

- Q: Does AsySG converge?
 A: Yes, the rate is consistent with SGD.

- Q: How much speedup?
 A: Linear speedup up to \(O(\sqrt{K}) \) workers.

Why linear speedup?

\(G(\hat{x}) \) Caused by asynchrony.

\(G(x) \) Caused by SGD

\(\nabla f(x) \)

Poster: Tonight 7 PM #63 @ 210C

Thank all the reviewers for their constructive comments!